Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37786668

RESUMO

Stickland-fermenting Clostridia preferentially ferment amino acids to generate energy and anabolic substrates for growth. In gut ecosystems, these species prefer dual redox substrates, particularly mucin-abundant leucine. Here, we establish how theronine, a more prevalent, mucinabundant substrate, supports dual redox metabolism in the pathogen Clostridioides difficile. Realtime, High-Resolution Magic Angle Spinning NMR spectroscopy, with dynamic flux balance analyses, inferred dynamic recruitment of four distinct threonine fermentation pathways, including ones with intermediate accrual that supported changing cellular needs for energy, redox metabolism, nitrogen cycling, and growth. Model predictions with 13C isotopomer analyses of [U-13C]threonine metabolites inferred threonine's reduction to butyrate through the reductive leucine pathway, a finding confirmed by deletion of the hadA 2-hydroxyisocaproate CoA transferase. In vivo metabolomic and metatranscriptomic analyses illustrate how threonine metabolism in C. difficile and the protective commensal Paraclostridium bifermentans impacts pathogen colonization and growth, expanding the range of dual-redox substrates that modulate host risks for disease.

2.
Magn Reson Chem ; 61(12): 740-747, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37654196

RESUMO

Prostate cancer (PCa) is one of the most prevalent cancers in men worldwide. For its detection, serum prostate-specific antigen (PSA) screening is commonly used, despite its lack of specificity, high false positive rate, and inability to discriminate indolent from aggressive PCa. Following increases in serum PSA levels, clinicians often conduct prostate biopsies with or without advanced imaging. Nuclear magnetic resonance (NMR)-based metabolomics has proven to be promising for advancing early-detection and elucidation of disease progression, through the discovery and characterization of novel biomarkers. This retrospective study of urine-NMR samples, from prostate biopsy patients with and without PCa, identified several metabolites involved in energy metabolism, amino acid metabolism, and the hippuric acid pathway. Of note, lactate and hippurate-key metabolites involved in cellular proliferation and microbiome effects, respectively-were significantly altered, unveiling widespread metabolomic modifications associated with PCa development. These findings support urine metabolomics profiling as a promising strategy to identify new clinical biomarkers for PCa detection and diagnosis.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Estudos Retrospectivos , Biomarcadores Tumorais , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Espectroscopia de Ressonância Magnética , Metabolômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...